Английский юмор на тему француза в отображении Антон Палыча Чехова. Сэр Эндрю Уайлс, А.П. Чехов и Пь | страница 4

Тема в разделе "Трёп", создана пользователем ВиРа, 26 дек 2011.

  1. ВиРа

    ВиРа Дилетант

    Регистрация:
    28.11.2011
    Сообщения:
    615
    Симпатии:
    14
    Адрес:
    СПб плюс Хайфа
    Для не боявшихся математики в школе :

    (Зарегистрируйтесь или Авторизуйтесь)

    (Зарегистрируйтесь или Авторизуйтесь)

    (Зарегистрируйтесь или Авторизуйтесь)

    (Зарегистрируйтесь или Авторизуйтесь)

    Итак, "фокус Пьера Ферма" сродни детским математическим фокусам

    [SIZE=8pt](типа "докажу, что 4 равно 5"), [/SIZE]основанным на умножении\делении на ноль.

    Эйлер - отмахнулся шуткой, мол, надо обыскать дом этого гасконца,

    Гауссу - было не до пустяков, и ... "народ" окрестил шутку "ВТФ".

    "Пуганая ворона куста боится", - вот и не могли долго найти топор под лавкой !

    А надо было, просто, не сомневаться в супер таланте и чести Пьера Ферма !

    И "надо быть спокойным и упрямым ..."

    [SIZE=8pt]Но - не таким как Шелдон в одной из серий "Теории Большого Взрыва" - с карточным фокусом.[/SIZE]
     
    Последнее редактирование модератором: 15 июн 2014
  2. ВиРа

    ВиРа Дилетант

    Регистрация:
    28.11.2011
    Сообщения:
    615
    Симпатии:
    14
    Адрес:
    СПб плюс Хайфа
    Любопытно, а сделал ли местный шутник скрытыми гиперссылки на хостинг этого сайта, - проверяю :

    "attachmentid=39352" ... [attachmentid=39352] ... - (Зарегистрируйтесь или Авторизуйтесь)

    "attachmentid=39354" ... [attachmentid=39354] .... - (Зарегистрируйтесь или Авторизуйтесь)

    [SIZE=14pt]Ага ! _ [/SIZE]Этот никчемный недоразвитый оппонент явно перестарался, -

    и под себя сходил от натуги !!!

    Кстати, как известно, "истина не тускнеет от повторения", -
     
    Последнее редактирование модератором: 15 июн 2014
  3. ВиРа

    ВиРа Дилетант

    Регистрация:
    28.11.2011
    Сообщения:
    615
    Симпатии:
    14
    Адрес:
    СПб плюс Хайфа
    Любопытно, а сделал ли местный шутник скрытыми гиперссылки на хостинг этого сайта, - проверяю :

    "attachmentid=39352" ... [attachmentid=39352] ... - (Зарегистрируйтесь или Авторизуйтесь)

    "attachmentid=39354" ... [attachmentid=39354] .... - (Зарегистрируйтесь или Авторизуйтесь)

    [SIZE=14pt]Ага ! _ [/SIZE]Этот никчемный недоразвитый оппонент явно перестарался, -

    и под себя сходил от натуги !!!
     
    Последнее редактирование модератором: 15 июн 2014
  4. ВиРа

    ВиРа Дилетант

    Регистрация:
    28.11.2011
    Сообщения:
    615
    Симпатии:
    14
    Адрес:
    СПб плюс Хайфа
    Текст между строками восьмёрок можно прочесть нормально вот здесь :

    (Зарегистрируйтесь или Авторизуйтесь)

    888888888888888888888888888888888888888888888888888888888888888888888888888

    ------------------------------------------------------------------------------------------------------------------------------

    ПРЕДИСЛОВИЕ к реконструкции док-ва 17-го века

    _ _ _ _ _ _ Элементарное доказательство «последней» теоремы Пьером Ферма

    в общем виде _ не выходит за рамки программы по математике средней школы,

    но имеет смысл привести частный случай кубов – без главного трюка П.Ферма,

    сделавшего доказательство более коротким и "необычным", - детского фокуса.

    N = 3, - «для кубов» Z3 = Y3 X3 , -

    где Z, Y, X - натуральные без общего множителя, X не делится на 3.

    Z3 -Y3 = X3 = (Z - Y)( Z2 ZY Y2) = (Z - Y)[(Z - Y)(Z 2Y) 3Y2], -

    где (Z - Y) и квадратная скобка не имеют общего множителя, так что

    и X3 разбивается на два эти множителя, которые обозначим Q3 и P3:

    X3 = Q3P3, где Q3 =Z – Y, -

    при этом, если X – чётное число, то чётно Q а не P, т.к. нечётны Z и Y.

    Задавая любые допустимые значения Q и P получим - из исходного

    в теореме - уравнение с одним неизвестным, например, Y :

    (Y Q3)3 - Y3 = Q3P3. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [1]

    Однако можно представить Q3P3 и другим способом - по тождеству

    (a [​IMG]2 - (a - [​IMG]2 = 4ab, когда a = P3, b = Q3, -

    разностью квадратов целых чисел S2 - R2, связанных с P и Q: ,

    - для X чётного - P3Q3 = (P3 Q3/4)2 - (P3 – Q3/4)2;

    - для X нечётного - P3Q3 = (P3 Q3)2/4 - (P3 – Q3)2/4, -

    так что ещё одно уравнение, как и [1], равносильно исходному в ПТФ:

    Z3 – Y3 = S2 - R2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [2]

    Тогда для целых Z3 и Y3 должно существовать целое число W

    такое, что Z3 - S2 = Y3 - R2 = W, и тогда Y3 = W R2 или :

    Y = (W R2)1/ 3, -

    т.е. искомое число Y является либо единственным вещественным

    корнем Y1 алгебраического уравнения третьей степени общего вида:

    (Y- Y1)( Y – Y2)(Y- Y3) = 0, -

    либо трёхкратным корнем Y1,2,3 .... ( в силу основной теоремы алгебры).

    Уравнение [1] - после раскрытия скобки (Y Q3)3 и сокращения

    левой и правой частей на Q3 - становится квадратным уравнением :

    3Y2 3Q3Y Q6 - P3 = 0, -

    с парой корней одного класса чисел, а т.к. Y = (W R2)1/ 3 имеет лишь

    одно вещественное значение, то оба корня вещественны только в случае

    их совпадения, т.е. равенства нулю дискриминанта D этого уравнения :

    D = (4P3– Q6 )/12, что невозможно, т.к. у P и Q нет общего множителя.

    * * *

    -----------------------------------------------------------------------------------------------------------------------------

    888888888888888888888888888888888888888888888888888888888888888888888888888

    Текст реконструкции общего доказательства :

    (Зарегистрируйтесь или Авторизуйтесь)

    (Зарегистрируйтесь или Авторизуйтесь)

    [attachmentid=39486]

    [attachmentid=39487]

    (Зарегистрируйтесь или Авторизуйтесь)

    (Зарегистрируйтесь или Авторизуйтесь)
     

    Вложения:

  5. Android-Dim

    Android-Dim Очень веселый, находчивый и умный, Ой еще ну такой

    Регистрация:
    11.12.2010
    Сообщения:
    4.250
    Симпатии:
    428
    Адрес:
    Moscow-Land
    [​IMG]
     
    Последнее редактирование модератором: 18 июн 2014
  6. ВиРа

    ВиРа Дилетант

    Регистрация:
    28.11.2011
    Сообщения:
    615
    Симпатии:
    14
    Адрес:
    СПб плюс Хайфа
    [SIZE=8pt]Опять никчемный недоразвитый оппонент резвится ... самовыражением безмозглости , -[/SIZE]

    приходится мне "поднять" этот пост в расчёте на дельные замечания.

    -------------------------------------------------------------------------------------------------------------------

    Текст между строками рыжих восьмёрок можно прочесть нормально вот здесь :

    (Зарегистрируйтесь или Авторизуйтесь)

    888888888888888888888888888888888888888888888888888888888888888888888888888

    ------------------------------------------------------------------------------------------------------------------------------

    ПРЕДИСЛОВИЕ к реконструкции док-ва 17-го века

    _ _ _ _ _ _ Элементарное доказательство «последней» теоремы Пьером Ферма

    в общем виде _ не выходит за рамки программы по математике средней школы,

    но имеет смысл привести частный случай кубов – без главного трюка П.Ферма,

    сделавшего доказательство более коротким и "необычным", - детского фокуса.

    N = 3, - «для кубов» Z3 = Y3 X3 , -

    где Z, Y, X - натуральные без общего множителя, X не делится на 3.

    Z3 -Y3 = X3 = (Z - Y)( Z2 ZY Y2) = (Z - Y)[(Z - Y)(Z 2Y) 3Y2], -

    где (Z - Y) и квадратная скобка не имеют общего множителя, так что

    и X3 разбивается на два эти множителя, которые обозначим Q3 и P3:

    X3 = Q3P3, где Q3 =Z – Y, -

    при этом, если X – чётное число, то чётно Q а не P, т.к. нечётны Z и Y.

    Задавая любые допустимые значения Q и P получим - из исходного

    в теореме - уравнение с одним неизвестным, например, Y :

    (Y Q3)3 - Y3 = Q3P3. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [1]

    Однако можно представить Q3P3 и другим способом - по тождеству

    (a [​IMG]2 - (a - [​IMG]2 = 4ab, когда a = P3, b = Q3, -

    разностью квадратов целых чисел S2 - R2, связанных с P и Q: ,

    - для X чётного - P3Q3 = (P3 Q3/4)2 - (P3 – Q3/4)2;

    - для X нечётного - P3Q3 = (P3 Q3)2/4 - (P3 – Q3)2/4, -

    так что ещё одно уравнение, как и [1], равносильно исходному в ПТФ:

    Z3 – Y3 = S2 - R2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [2]

    Тогда для целых Z3 и Y3 должно существовать целое число W

    такое, что Z3 - S2 = Y3 - R2 = W, и тогда Y3 = W R2 или :

    Y = (W R2)1/ 3, -

    т.е. искомое число Y является либо единственным вещественным

    корнем Y1 алгебраического уравнения третьей степени общего вида:

    (Y- Y1)( Y – Y2)(Y- Y3) = 0, -

    либо трёхкратным корнем Y1,2,3 .... ( в силу основной теоремы алгебры).

    Уравнение [1] - после раскрытия скобки (Y Q3)3 и сокращения

    левой и правой частей на Q3 - становится квадратным уравнением :

    3Y2 3Q3Y Q6 - P3 = 0, -

    с парой корней одного класса чисел, а т.к. Y = (W R2)1/ 3 имеет лишь

    одно вещественное значение, то оба корня вещественны только в случае

    их совпадения, т.е. равенства нулю дискриминанта D этого уравнения :

    D = (4P3– Q6 )/12, что невозможно, т.к. у P и Q нет общего множителя.

    * * *

    -----------------------------------------------------------------------------------------------------------------------------

    888888888888888888888888888888888888888888888888888888888888888888888888888

    Текст реконструкции общего доказательства :

    (Зарегистрируйтесь или Авторизуйтесь)

    (Зарегистрируйтесь или Авторизуйтесь)

    [attachmentid=39486]

    [attachmentid=39487]
     
  7. Android-Dim

    Android-Dim Очень веселый, находчивый и умный, Ой еще ну такой

    Регистрация:
    11.12.2010
    Сообщения:
    4.250
    Симпатии:
    428
    Адрес:
    Moscow-Land
    Мое мнение

    О великий и могучий Энштейн. Если ваше величество, хотя бы чуть чуть вдумываться над тем что, какую ахинею и словесный мусор он толкает людям в уши. То наверное вашему всезнайству, придет просветление, о совершенной шизанутости ваших постов.

    Это все тоже, что я вам к примеру буду рассказывать о прохождении Майкрафта с модами, для прокачки игрока как в креативе [​IMG]

    Театр одного актера :wacko:
     
  8. ВиРа

    ВиРа Дилетант

    Регистрация:
    28.11.2011
    Сообщения:
    615
    Симпатии:
    14
    Адрес:
    СПб плюс Хайфа
    Приличный оппонент отвечает по сути сказанного в теме, а не выкобенивается

    как сопливый подросток, освоивший ... не только устную речь ...

    Кстати, - Эйнштейн показал язык своим фанатам, не соображающим, что добавив

    третьего - контрольного - близнеца, летавшего антисимметрично второму братцу

    [SIZE=8pt](в "парадоксе близнецов")[/SIZE], все видят несостоятельность концепции Относительного

    Времени :

    пространство наше симметрично, _ и эти два "летуна" встретятся на финише в одном

    времени, хотя имели среднюю относительную скорость больше, чем с братцем дома.

    Но "непостижимая эффективность математики" спасает и самые безумные гипотезы.

    А вот загадку Пьера Ферма мог бы разгадать всяк, не боявшийся математики в школе :

    [attachmentid=39513]

    (Зарегистрируйтесь или Авторизуйтесь)
     

    Вложения:

    Последнее редактирование модератором: 19 июн 2014
  9. ВиРа

    ВиРа Дилетант

    Регистрация:
    28.11.2011
    Сообщения:
    615
    Симпатии:
    14
    Адрес:
    СПб плюс Хайфа
    [SIZE=14pt]Однако, пора заглянуть и под лавку [/SIZE]!

    Аннотация.

    Уравнение ‘последней’ теоремы Ферма (ПТФ) получает аналитическое решение

    заданием одного из трёх неизвестных произведением двух параметров (X ? QP).

    Применение начал математического анализа, включая поиск экстремума функции,

    затем доказывает ПТФ мгновенно.

    (Зарегистрируйтесь или Авторизуйтесь) см. (Зарегистрируйтесь или Авторизуйтесь)

    и то же (Зарегистрируйтесь или Авторизуйтесь)

    [attachmentid=39630][attachmentid=39631]

    (Зарегистрируйтесь или Авторизуйтесь)

    (Зарегистрируйтесь или Авторизуйтесь)
     

    Вложения:

  10. Const315

    Const315 Пользователи

    Регистрация:
    29.08.2009
    Сообщения:
    661
    Симпатии:
    108
    Я знал, что существует нарциссизм, но отягощенный шизофренией с уклоном в математику...??!?

    Чудны дела твои, господи.

    ..……......

    Продолжайте свой словесный онанизм, не буду мешать. Простите за вторжение.
     
  11. ВиРа

    ВиРа Дилетант

    Регистрация:
    28.11.2011
    Сообщения:
    615
    Симпатии:
    14
    Адрес:
    СПб плюс Хайфа
    [SIZE=12pt]Отважный бедолага аноним ... проговорился по Фрейду :[/SIZE]

    это он на свой аршин намерял, -

    не зная, как именует не говорящего по сути - никчемного недоразвитого

    оппонента (Зарегистрируйтесь или Авторизуйтесь)

    "Мамин сын" может опровергнуть авто-прихваченное звание интеллектуального ублюдка,

    если он прилично учился в школе и сможет высказаться насчёт двух страниц моей

    реконструкции ... не как тявкающая блевотиною моська.
     
  12. Const315

    Const315 Пользователи

    Регистрация:
    29.08.2009
    Сообщения:
    661
    Симпатии:
    108
    Да, я такой... [​IMG]
     
  13. ВиРа

    ВиРа Дилетант

    Регистрация:
    28.11.2011
    Сообщения:
    615
    Симпатии:
    14
    Адрес:
    СПб плюс Хайфа
    [SIZE=8pt] Перенос - за хрюканье форумного подонка.[/SIZE]

    ============================================================

    [SIZE=14pt]Однако, пора заглянуть и под лавку [/SIZE]!

    Аннотация.

    Уравнение ‘последней’ теоремы Ферма (ПТФ) получает аналитическое решение

    заданием одного из трёх неизвестных произведением двух параметров (X ? QP).

    Применение начал математического анализа, включая поиск экстремума функции,

    затем доказывает ПТФ мгновенно.

    (Зарегистрируйтесь или Авторизуйтесь) см. (Зарегистрируйтесь или Авторизуйтесь)

    и то же (Зарегистрируйтесь или Авторизуйтесь)

    [attachmentid=39630][attachmentid=39631]
     
  14. Const315

    Const315 Пользователи

    Регистрация:
    29.08.2009
    Сообщения:
    661
    Симпатии:
    108
    Да, с русским языком у вас плоховато. Все-таки школу нужно закончить, пригодится в жизни.
     
    Последнее редактирование модератором: 1 июл 2014
  15. ВиРа

    ВиРа Дилетант

    Регистрация:
    28.11.2011
    Сообщения:
    615
    Симпатии:
    14
    Адрес:
    СПб плюс Хайфа
    [SIZE=8pt] Вынужден "поднять" тему из- за резвящегося форумного подонка.[/SIZE]

    =====================================================

    [SIZE=14pt]Однако, пора заглянуть и под лавку [/SIZE]!

    Аннотация.

    Уравнение ‘последней’ теоремы Ферма (ПТФ) получает аналитическое решение

    заданием одного из трёх неизвестных произведением двух параметров (X ? QP).

    Применение начал математического анализа, включая поиск экстремума функции,

    затем доказывает ПТФ мгновенно.

    (Зарегистрируйтесь или Авторизуйтесь) см. (Зарегистрируйтесь или Авторизуйтесь)

    и то же (Зарегистрируйтесь или Авторизуйтесь)

    [attachmentid=39630][attachmentid=39631]
     
  16. ВиРа

    ВиРа Дилетант

    Регистрация:
    28.11.2011
    Сообщения:
    615
    Симпатии:
    14
    Адрес:
    СПб плюс Хайфа

    Вложения:

    Последнее редактирование модератором: 26 авг 2014
  17. ВиРа

    ВиРа Дилетант

    Регистрация:
    28.11.2011
    Сообщения:
    615
    Симпатии:
    14
    Адрес:
    СПб плюс Хайфа
    Ой, забыл про аннотацию и тройки Пифагора :

    -------------------------------------------------------------------------------------------------------

    _ _ Аннотация. _ Гипотеза наличия ошибки у Пьера Ферма в доказательстве

    ‘последней’ теоремы (ПТФ) подкреплена «публикацией» им доказательства

    частного случая N = 4, при том, что начинал-то автор, наверняка, с N = 3.

    Но равенство натуральных чисел в степени N не зависит от N, и найденная

    для кубов неизбежность обнуления одного из двух натуральных слагаемых

    искомой тройки Ферма обернулась общим доказательством. А независимое

    - для биквадратов – вызвано прозрачной сводимостью исходного уравнения

    к вычислению лишь двух обыкновенных, на первый взгляд, троек Пифагора.

    --------------------------------------------------------------------------------------------------------

    (Зарегистрируйтесь или Авторизуйтесь)

    (Зарегистрируйтесь или Авторизуйтесь)

    (Зарегистрируйтесь или Авторизуйтесь)

    [attachmentid=40516]

    [attachmentid=40517]

    (Зарегистрируйтесь или Авторизуйтесь)

    (Зарегистрируйтесь или Авторизуйтесь)
     

    Вложения:

  18. Const315

    Const315 Пользователи

    Регистрация:
    29.08.2009
    Сообщения:
    661
    Симпатии:
    108
  19. Android-Dim

    Android-Dim Очень веселый, находчивый и умный, Ой еще ну такой

    Регистрация:
    11.12.2010
    Сообщения:
    4.250
    Симпатии:
    428
    Адрес:
    Moscow-Land
    Как,вам не смешно? [​IMG] тут же просто обхохочешься, Вира такой Петросян, ну прям вАбСчЕ.

    [​IMG][​IMG]Эх, уже завтра, у меня такая же петросяния снова начинается :cray:
     
  20. Электрон

    Электрон Пользователи

    Регистрация:
    08.04.2010
    Сообщения:
    819
    Симпатии:
    41
    Я вот как-то пытался осилить это, но понял, не стоит этого делать, юмор тут видать может понять только автор..
     

Предыдущие темы